
Database Security

PRESENTATION BY:
João Luís (PDMFC)

An Introduction

1

Table of Contents (1/3)

Slide 5: Intended Audience

Slide 6: High-Level Objectives

Slide 7: Privacy, Data Confidentiality, and Trust!

Slide 6: G.D.P.R. in a nutshell

Slide 12: Techniques to enforce data

confidentiality?

Slide 13: The Role of Database Management

Systems on Business Developments

Slide 14: What is a database ? DB, DBMS,

RDBMS

Slide 15: Popular (R)DBMS

Slide 17: Desirable functionality in an

RDBMS for O.L.T.P. ?

Slide 19: Desirable functionality in a DBMS
for O.L.A.P. ?

Slide 21: Glossary: Network Protocol,
Common Internet Protocols, Popular

Internet Applications

Slide 24: People, Data, Privacy, and
Organizations

2

Table of Contents (2/3)

Slide 26: Relational Database Data

Structure

Slide 27: SQL – Structured Query

Language, SELECT, INSERT, UPDATE,

DELETE

Slide 54: Application Layers and SQL

Queries

Slide 57: Database Protocols ?

Slide 65: Principle of Least Privilege: Role
Based Access Control

Slide 67: Data Segregation: Row-Level

Security

Slide 72: Data Backups

Slide 76: Datasets for Analytics/Tests:

Anonymization&Masking

Slide 77: Data Fingerprinting (or

Watermarking)

Slide 79: Data Encryption

3

Table of Contents (3/3)

Slide 83: Preparing for Practices

Slide 84: Popular Web Tech Stacks:

L.A.M.P.

Slide 85: Popular Web Tech Stacks:

Python (possibly w/ Flask)

Slide 86: Popular Web Tech Stacks:

NodeJS + MySQL

Slide 87: Tech Stack for Practice: SQLite

Slide 88: Tech Stack for Practice:

sql.js.org

Slide 90: Practices

Slide 91: Practices - Lessons learned

Slide 92: Other Resources

4

Intended Audience

- Application Developers and Architects

- Database, System, and Network administrators

- (Data) Analysts

"To learn how to find, one must first learn how to hide!"

Spoken in “Fahrenheit 451” (1966), directed by François Truffaut

5

High-Level Objectives

Principles

Description of objectives in human language, written for humans!

(Based on social science’s studies)

Why do we care about “security” ?

6

Privacy, Data Confidentiality, and Trust!

“Customer trust functions directly as a direct function of their privacy rights.

Anxiety about data handling by collectors leads customers to lose trust which

might reduce their business involvement. For increasing customer trust

businesses should establish proactive precautions to protect their data by

providing clear collection policies and strong security protocols. These security

practices help build consumer trust which generates better transaction

willingness and business accomplishments.“

“The Relationship between Data Privacy and Consumer Trust”,

July 2025 SHS Web of Conferences 218

Authors: Yijia Luo

7

G.D.P.R. in a nutshell (1/4)

General Data Protection Regulation (GDPR) is an EU law that establishes rules for how

organizations collect, use, and store the personal data of people in the EU and EEA.

It requires companies to get explicit consent for data use, gives individuals rights over their

data (like the right to access or delete it), and imposes strict security and transparency

obligations. The goal is to protect individuals' privacy by making companies accountable for

how they handle personal information.

8

G.D.P.R. in a nutshell (2/4)

For individuals (data subjects):

 Right to be informed: You must be told how your data is being used.

 Right to access: You can request to see what data a company has collected about you.

 Right to erasure: You can request that a company delete your data.

 Right to rectification: You can ask for inaccurate data to be corrected.

9

G.D.P.R. in a nutshell (3/4)

For companies (data controllers and processors):

 Consent: Must obtain clear consent to collect and process data, with a few exceptions.

 Transparency: Must state (openly) about what data it collects and why.

 Data minimization: Should only collect the data needed for a specific purpose.

 Security: Must implement strong security measures to protect the data.

 Accountability: Must be able to demonstrate compliance with the rules.

10

G.D.P.R. in a nutshell (4/4)

What is personal data?

Any information that can directly or indirectly identify a living person.

This includes names, phone numbers, and addresses, but also data like interests, purchase

history, and online behavior.

11

Techniques to enforce data confidentiality?

Access controls: Implement Role-Based Access Control (RBAC) to ensure employees only have access to the data
necessary for their job functions.

Encryption: Use encryption to scramble data, making it unreadable to anyone without the correct decryption key. This
applies to data both at rest (stored) and in transit (being sent).

Transparency and consent: Inform individuals about how their data will be used at the point of collection and obtain their
explicit consent when possible.

Data anonymization and masking: Remove or obscure personally identifiable information from datasets for analytics or
testing purposes.

Employee training: Regularly train employees on the importance of data confidentiality, security policies, and how to
handle sensitive information responsibly.

Privacy-by-design: Integrate privacy and security measures into the design of new systems, services, and products from
the outset, rather than as an afterthought.

12

The Role of Database Management Systems on
Business Developments

“Databases are essential tools for businesses, serving as centralized repositories for data

management. They enable organizations to store, retrieve, and manipulate data efficiently,

which is crucial for driving business development initiatives. In a competitive landscape,

leveraging data effectively can lead to significant growth opportunities

Design/methodology/approach One of the primary roles of a system database is to organize

data systematically. Businesses generate vast amounts of information, and without a structured

database, this data can become overwhelming. A well-designed database ensures that data is

categorized, indexed, and easily accessible, facilitating efficient data management and retrieval.

“

December 2024 International Journal of Management Technology and Social Sciences

Volume 8(Issue 2):2581-6012

Authors: Mustaf Abdulle ; Abdisalan Muse Osoble

13

What is a database ? DB, DBMS, RDBMS

Q: What is a Database (DB) ?

A: An organized collection of data.

Q: What is an Database Management System (DBMS) ?

A: A system (software) that interacts with users or applications to provide the

required access to data.

Q: What is a Relational Database Management System (RDBMS) ?

A: A DBMS where the data is organized into relations (or tables).

14

Popular RDBMS (SQL)

MySQL / MariaDB

PostgreSQL

SQLite

Apache DB (Java DB) / HSQL / H2

Firebird

Microsoft SQL Server

Oracle

Sybase

IBM DB2

SAP HANA

15

Popular DBMS (NoSQL)

MongoDB

Redis

Cassandra

Amazon DynamoDB

Couchbase

Apache HBase

Neo4j

16

Desirable functionality in an RDBMS for O.L.T.P. ?

(O.L.T.P.) = Online Transaction Processing

ACID Transactions (Atomicity, Consistency, Isolation, Durability)

Referential Integrity

Fine-grained locking

Unicode support

(All SQL databases shown before are OLTP oriented)

17

Desirable characteristics of O.L.T.P. ?

High-Availability … Business interruptions can be costly.

Fault tolerance … one of several ways to achieve high availability.

Scalability …

● How large business grow ?
● Keeping up with the demand ?
● Quick response => Happy customers ?

“If you don’t drive your business, you will be driven out of business.”

B.C. Forbes, Financial Journalist and Author Forbes Magazine

18

Desirable functionality in a DBMS for O.L.A.P. ?

(O.L.A.P.) = Online Analytical Processing

Optimized for analysis: Designed for reading large volumes of data for analytical

queries, rather than processing daily transactions.

Integrated/Unified data (from multiple sources/other databases).

Historical data.

Structured for queries.

Data cleansing.

19

Popular DBMS for O.L.A.P.

Snowflake

Google BigQuery

Amazon Redshift

Azure Synapse Analytics

IBM Db2 Warehouse

20

Glossary: Network Protocol

A network protocol is a set of formal rules and conventions that govern how data
is transmitted, communicated, and received across a network. It defines the
procedures for devices to format, transmit, and interpret data, essentially acting as a
common language for computer programs to understand each other.

Key aspects of network protocols include:

Syntax: Defines the structure or format of the data.

Semantics: Specifies the meaning of the sections of information.

Timing: Covers when and how fast data should be sent.

Error Detection and Correction: Includes mechanisms to ensure data integrity and
reliable delivery.

21

Glossary: Common Internet Protocols

Internet Protocol (IP): The fundamental protocol for addressing and routing data packets to ensure they reach the correct
destination. Data packets may be lost, and no delivery order is guaranteed.

User Datagram Protocol (UDP): A protocol for computer programs to interact with the IP protocol and have full control
over sending and receiving individual data packets.

Transmission Control Protocol (TCP): Works with IP to create a reliable, ordered connection, checking for errors and
retransmitting lost packets. Built on top of the IP protocol.

HyperText Transfer Protocol (HTTP/HTTPS): The protocol used to transfer web pages and other files on the World Wide
Web. HTTPS adds a layer of security. Built on top of the TCP protocol (for versions 1 and 2). (Version 3 is built on top of
UDP).

Domain Name System (DNS): Translates human-readable domain names (like google.com) into IP addresses. Built on top
of UDP.

Simple Mail Transfer Protocol (SMTP): Used for sending email. Built on top of the TCP protocol.

File Transfer Protocol (FTP): Used for transferring files between computers. Built on top of the TCP protocol.

Secure Shell (SSH): Used for remote text terminal access and/or transmitting/receiving files (with better security than FTP). Built on top of the TCP protocol.

22

Glossary: Popular Internet Applications

Online services: Banking, Rental, Bookings, Learning, Shopping, Public
Services, etc…

Multimedia communication and services: audio+video, chat, email, file
transfer x one-to-one (also called point-to-point), one-to-many (ex: TV
streaming/broadcast), many-to-many (ex: conferences).

… and many others.

(On the side of the service provider) All of these applications need to store
content and management information in one or more:

Databases

23

People, Data, Privacy, and Organizations

Typical Scenario

A view, external to

the organization.

- Identify menaces to

data privacy outside

an organization that

store and manage

private user

data ?

24

People, Data, Privacy, and Organizations

Typical Scenario

A view, internal to

the organization.

- Identify menaces to

data privacy inside

an organization that

store and manage

private user

data ?

25

Relational Database Data Structure

In relational databases, data is organized in tables

(also called “relations” in relational algebra

terminology).

● Each table has a unique name.

● Tables are structured into columns.

● Each column has a name (unique within that

table), and a data type.

● Column values may refer to rows in other tables.

The definition of all the tables and its structure is

called “the database schema”.

26

SQL – Structured Query Language

... is a database computer language designed for:

● the retrieval and management of data in relational database management

systems (RDBMS),

● database schema creation and modification,

● and database object access control management.

... is pronounced “ess-kwe-el” or “sequel”.

... is an ANSI/ISO standard (SQL-89, …, SQL:2016, etc...).

27

SQL Statements Classification

SQL is a declarative language, not an imperative (procedural) one.

Language statements are classified as:

● DML – Data Manipulation Language statements
○ SELECT – extract data.

○ INSERT – insert data.

○ UPDATE – update data.

○ DELETE – delete data.

● DDL – Data Definition Language statements
○ CREATE TABLE – create and define a table.

○ DROP TABLE – delete a table, and its whole data.

28

DML Queries - SELECT

Syntax of the SELECT statement:

SELECT column_expression [,...]

FROM table_expression [,...]

[WHERE condition]

[GROUP BY expression [,...]

 [HAVING condition]]

[ORDER BY expression [ASC|DESC][,...]]

29

SELECT * Example

SELECT * FROM Employee;

Name EmpId DeptName

---- ----- --------

Harry 3415 Finance

Sally 2241 Sales

George 3401 Finance

Harriet 2202 Sales

4 rows selected

30

SELECT … WHERE condition

Conditions evaluate to TRUE or

FALSE. Can use comparison

operators, predicates, logical

operators, mathematical

expressions,

functions, etc...

31

SELECT+WHERE = Example

SELECT Name

FROM Employee

WHERE EmpId = 2241;

Name

Sally

1 rows selected

32

SELECT+WHERE >= Example

SELECT Name

FROM Employee

WHERE EmpId >= 3000;

Name

Harry

George

2 rows selected

33

SELECT+WHERE >= Example

34

SELECT Name

FROM Employee

WHERE EmpId >= 2000

 AND EmpId < 3000;

Name

Sally

Harriet

2 rows selected

SELECT+ORDER BY Example

SELECT Name

FROM Employee

WHERE EmpId >= 3000

ORDER BY Name ASC;

Name

George

Harry

2 rows selected

35

DML Inserting Data - INSERT

Syntax of the INSERT statement (to insert a single new row of data):

INSERT INTO table_name

[(colum_name1, ...)]

VALUES (value1, ...)

Syntax of the INSERT statement (to insert a multiple new rows of data):

INSERT INTO table_name

[(colum_name1, ...)]

SELECT value1, ...

36

INSERT Example

INSERT INTO Employee

(Name, EmpId, DeptName)

VALUES (

'John',3602,'Finance'

);

1 rows inserted

Depending on the software, a COMMIT statement may be required, so that the data is persisted to

storage, and visible to other client applications.

37

DML Updating Data - UPDATE

Syntax of the UPDATE statement :

UPDATE table_name

SET column_name1 = expression1

[, column_name2 = expression2

 [,...]]

[WHERE condition]

On the absence of a WHERE condition, all the rows in the table_name are

updated.

38

UPDATE Example

UPDATE Employee

SET name=CONCAT('Mr.',name)

WHERE EmpId=3602;

1 row updated

Depending on the software, a COMMIT statement may be required, so that the data is persisted to

storage, and visible to other client applications.

39

DML Deleting Data - DELETE

Syntax of the DELETE statement :

DELETE FROM table_name [WHERE condition]

Deletes all rows where condition is true.

If the WHERE condition is absent, all rows are deleted.

The effects of the DELETE are (usually) irreversible!

40

Optional SQL Introductory Practice

Unzip sqlsecurity.zip and open sqlsecurity/practices/index.html

and perform the “Setup” section.

Or visit https://homes.pdmfc.com/jpsl/sqlsecurity/practice/

Or https://shorturl.at/yEGUo

Then go the SQL Playground, click Examples, then select “Employees”,

and then press “Execute”.

You now have a database setup, and are free to try out any SQL statements you wish

on the right “SQL Editor” pane. Press “Execute” to run them. Multiple statements must

be separated by ;

41

https://homes.pdmfc.com/jpsl/sqlsecurity/practice/
https://shorturl.at/yEGUo

Optional Introductory SQL Exercises

Translate from english to SQL, and verify by executing in the “SQL Playground”:

1. List all employee names sorted by alphabetical ascending order. (Tip: Terminate

the select with “ORDER BY name ASC”).

2. List all employee names sorted by alphabetical descending order.

3. What is the employee name and department of the employee with number 2241 ?

4. Insert a new employee, name “Bart”, number 2991, department “Sales”.

5. Rename employee number 2991 to “Simpson”.

6. Delete employee number 2991.

Solutions on the next slide.

42

Optional Introductory SQL Exercises

Translate from english to SQL, and verify by executing in the “SQL Playground”:

1. SELECT name FROM Employee ORDER BY name ASC;

2. SELECT name FROM Employee ORDER BY name DESC;

3. SELECT name, deptName FROM Employee WHERE empId=2241;

4. INSERT INTO Employee (name, empId, deptName)

 VALUES ('Bart',2291,'Sales');

5. UPDATE Employee SET name='Simpson' WHERE empId=2291;

6. DELETE FROM Employee WHERE empId=2291;

43

More SQL Possibilities (optional)

It is not going to be needed in the exercises, but

SQL can do much, much more…

44

SELECT COUNT(*) Example

SELECT COUNT(*)

FROM Employee

WHERE EmpId >= 3000;

COUNT(*)

2

1 row selected

45

SELECT+AVG Example

SELECT AVG(EmpID)

FROM Employee

WHERE EmpId >= 3000;

AVG(EmpID)

3408

1 rows selected

46

SELECT+GROUP BY Example

SELECT DeptName, SUM(EmpID)

FROM Employee

GROUP BY DeptName;

DeptName SUM(EmpID)

-------- ----------

Finance 6816

Sales 4443

2 rows selected

47

Cartesian Product

… 4x3 = 12 rows 48

SQL SELECT for Cartesian Product

SELECT * FROM Employee, Dept;

Name EmpId DeptName DeptName Manager

---- ----- -------- -------- -------

Harry 3415 Finance Finance George

Sally 2241 Sales Finance George

...

12 rows selected.

49

Natural Join

50

SQL SELECT for Natural Join

SELECT * FROM Employee A, Dept B

WHERE A.DeptName = B.DeptName;

or

SELECT * FROM Employee AS A

INNER JOIN Dept AS B

ON A.DeptName = B.DeptName;

A.Name A.EmpId A.DeptName B.DeptName B.Manager

------ ------- ---------- ---------- ---------

Harry 3415 Finance Finance George

Sally 2241 Sales Sales Harriet

...

4 rows selected.

51

SQL has a much bigger set of functions…

And much more…

● Single Row Functions: return a single result row for each row of the queried table

or view. These include Numeric Functions ; Character Functions ; Data Mining

Function ; Datetime Functions ; Conversion Functions ; Collection Function ; XML

Functions ; JSON Functions ; 2D functions ; N-Dim functions ; etc…

● Aggregate Functions: return a single value from a group of rows. AVG ; SUM ;

COUNT ; MIN/MAX ; STDDEV ; etc…

● Analytic Function: calculations based on the rows before and after the current

row.

● User Defined Functions: defined by the user/programmer.

52

SQL has a bigger set of (non-standard) capabilities…

● Data constraints: Validate that data obeys specific constraints. Includes referential

integrity constraints (values reference rows in other tables), and user defined

constraints.

● In-database programming (code that runs in the database engine, with “low-

impedance” data handling).

● Triggers: Events of data being inserted, updated, or deleted, trigger the

occurrence of user-defined actions.

53

Application Layers and SQL Queries (0/2)

Security scopes discussed:

 Main focus.

 Related to DB only!

54

Application Layers and SQL Queries (1/2)

1. The user interacts with an application, and requests to view

some specific data.

2. The application software translates the request into an SQL

query (typically a SELECT statement), and makes use of the

RDBMS driver to send the request to the database. (The

request typically includes database access credentials).

3. The RDBMS receives the request, (validates the access

credentials,) parses the SQL query, and makes a series of

O.S. API calls to read some specific files (or specific disk

blocks directly).

55

Application Layers and SQL Queries (2/2)

4. The disk hardware + firmware fetches the requested disk data
blocks and sends them back to the O.S.

5. The RDBMS receives the data from the O.S., processes it
(filter, sort, aggregate, compute, etc), and sends them back to
the application, according to the specific SQL network
protocol.

6. The application receives the DB API call results, with the
requested data, and displays it (in proper format) to the end-
user.

The network protocol used for steps 2 and 5 is database-specific
and (in most cases) TCP based.

56

Database Protocols ?

“Database protocols are the unseen bridges connecting

applications with databases. Choosing the right database protocol impacts

performance, scalability, and compatibility. Understanding these protocols and their

networking layers helps developers make better decisions when designing database-

driven applications and migrating between different database systems.”

https://designvault.medium.com/understanding-database-protocols-how-databases-communicate-c1ab61e21a40 Ganesh Sahu

6 examples for popular DBMSs

57

https://designvault.medium.com/understanding-database-protocols-how-databases-communicate-c1ab61e21a40
https://designvault.medium.com/understanding-database-protocols-how-databases-communicate-c1ab61e21a40
https://designvault.medium.com/understanding-database-protocols-how-databases-communicate-c1ab61e21a40
https://designvault.medium.com/understanding-database-protocols-how-databases-communicate-c1ab61e21a40
https://designvault.medium.com/understanding-database-protocols-how-databases-communicate-c1ab61e21a40
https://designvault.medium.com/understanding-database-protocols-how-databases-communicate-c1ab61e21a40
https://designvault.medium.com/understanding-database-protocols-how-databases-communicate-c1ab61e21a40
https://designvault.medium.com/understanding-database-protocols-how-databases-communicate-c1ab61e21a40
https://designvault.medium.com/understanding-database-protocols-how-databases-communicate-c1ab61e21a40
https://designvault.medium.com/understanding-database-protocols-how-databases-communicate-c1ab61e21a40
https://designvault.medium.com/understanding-database-protocols-how-databases-communicate-c1ab61e21a40
https://designvault.medium.com/understanding-database-protocols-how-databases-communicate-c1ab61e21a40
https://designvault.medium.com/understanding-database-protocols-how-databases-communicate-c1ab61e21a40
https://designvault.medium.com/understanding-database-protocols-how-databases-communicate-c1ab61e21a40
https://designvault.medium.com/understanding-database-protocols-how-databases-communicate-c1ab61e21a40
https://designvault.medium.com/understanding-database-protocols-how-databases-communicate-c1ab61e21a40
https://designvault.medium.com/understanding-database-protocols-how-databases-communicate-c1ab61e21a40
https://designvault.medium.com/understanding-database-protocols-how-databases-communicate-c1ab61e21a40
https://designvault.medium.com/understanding-database-protocols-how-databases-communicate-c1ab61e21a40
https://designvault.medium.com/understanding-database-protocols-how-databases-communicate-c1ab61e21a40

Database Protocols: Generic Security Characteristics

Authentication: Most DBMS allow the administrator/developer to configure a set of database users
and privileges that can be used for Role Based Access Control (RBAC) of data. Some can share the
O.S. user database and authentication mechanisms. All support the classic username/password
authentication method, with security variations (including client X.509 certificates).

Transport: All examples shown here are TCP based, and most support SSL/TLS TCP transport (using
certificates), with specific configuration possibilities.

Simple TCP transport is (normally) vulnerable to network traffic sniffing!

=> Simple TCP transport should only be used in “secure” networks.

Keep in mind that opening a SSL/TLS connection is more slow (and resource consuming) that a simple
TCP connection. As such, the use of connection pools (on the application side) is recommended to
avoid the connection overhead.

58

Database Protocols 1/6: PostgreSQL Wire Protocol

1. PostgreSQL Wire Protocol: Used by: PostgreSQL, CockroachDB (wire-compatible),

YugabyteDB (wire-compatible), Amazon Aurora PostgreSQL (full compatibility advertised).

Security: Supports SSL/TLS for encrypted communication, role-based access control

(RBAC), and strong authentication methods like SCRAM.

Performance: Optimized for complex queries, ACID compliance, and transaction integrity.

May have slightly higher latency compared to NoSQL databases.

Java Library: JDBC PostgreSQL Driver

Python Library: psycopg2

59

Database Protocols 2/6: MySQL Protocol

2. MySQL Protocol

Used by: MySQL, MariaDB, TiDB (wire-compatible), Amazon Aurora MySQL (full

compatibility advertised).

Security: Supports SSL/TLS encryption, native password authentication, and fine-grained

access control.

Performance: Efficient for read-heavy workloads with replication support. Query execution

may slow down under high concurrency.

Java Library: JDBC MySQL Connector

Python Library: mysql-connector-python

60

Database Protocols 3/6: TDS (Tabular Data Stream)

3. TDS (Tabular Data Stream) for MSSQL

Used by: Microsoft SQL Server (MS-SQL), Sybase

Security: Uses SSL/TLS encryption, Windows authentication, and Kerberos support for

secure communication.

Performance: Efficient for enterprise workloads, supports connection pooling but may

have higher overhead due to security enforcement.

Java Library: JDBC SQL Server Driver

Python Library: pyodbc

61

Database Protocols 4/6: MongoDB Wire Protocol

4. MongoDB Wire Protocol

Used by: MongoDB

Security: Supports SSL/TLS encryption, authentication via SCRAM and X.509 certificates,

and role-based access control.

Performance: High throughput for unstructured data, optimized for horizontal scaling but

weaker consistency guarantees than SQL databases.

Java Library: MongoDB Java Driver

Python Library: pymongo

62

Database Protocols 5/6: Cassandra Binary Protocol

5. Cassandra Binary Protocol

Used by: Apache Cassandra, ScyllaDB (wire-compatible)

Security: Supports SSL/TLS encryption, password authentication, and access control lists

(ACLs).

Performance: Designed for scalability and fault tolerance, optimized for fast writes but can

have higher read latency compared to relational databases.

Java Library: Datastax Java Driver

Python Library: cassandra-driver

63

Database Protocols 6/6: Redis Serialization Protocol

6. Redis Serialization Protocol (RESP)

Used by: Redis

Security: Lacks built-in authentication by default, but supports password authentication

and SSL/TLS encryption in enterprise editions.

Performance: Extremely low latency, high throughput, and optimized for in-memory

operations. Best suited for caching rather than transactional workloads.

Java Library: Jedis

Python Library: redis-py

64

Principle of Least Privilege 1/2: Role Based Access Control

Most databases support “Principle of Least Privilege” by organizing the

database users into groups, also called roles. One user can belong to

more than one group (have more than one role).

Each group/role has a set of privileges. A user in multiple groups/with

multiple roles inherits all the privileges of each group/role.

A privilege is the ability to perform a SELECT and/or INSERT and/or

UPDATE and/or DELETE, … on a particular database object (table,

view, sequence, etc).

65

Principle of Least Privilege 2/2: RBAC

Examples of role names and privileges:

dashboard - Can SELECT from a particular VIEW that gives the number of customer

enrolled this month. No other operation allowed.

analytics - Can SELECT from all the tables, except for the table with each customer’s
password. Cannot perform INSERT UPDATE or DELETE on any table.

customer - Can SELECT, INSERT or UPDATE on any table with customer data. Cannot
perform DELETEs, and is only allowed SELECTs on system tables. The application must

ensure that the SQL statements only affect rows related to one specific customer.

owner - Can do anything, including new table creation, modification, deletion, inside one
specific schema.

superuser - Can do anything on all schemas.

66

Data Segregation 1/5: Row-Level Security

On some situations, it is convenient to have a single database (a single

instance or a single cluster), a single schema, the same tables, but

some of the data in those table rows must be accessible only by some

users, and not by others.

These rules are normally coded in the applications themselves, but if

one user (with data visibility restrictions) needs to access the database

directly using a SQL tool (like a Data Analytics tool, a Data Visualizer

tool, or even a spreadsheet with an SQL client, etc), a new mechanism

is needed.

67

Data Segregation 2/5: Row-Level Security

Example 1: A government/regulator service has

business/fiscal/customer/etc data from distinct business competitors.

Extending the “Right to access” for business, each business owner can

view the data that the government has about its own business (ie.

through a web application), but, never the data from its competitors.

The schema is the same, data from distinct competitors is stored in the

same table(s), but distinct table rows have data from distinct

competitors. Users from one competitor are never allowed access data

from other competitor.

68

Data Segregation 3/5: Row-Level Security

Example 2. A commercial service with personal customer data allows

some entities to become resellers of the service. For example,

business franchise, where the owner of the franchise offers the same

services (same applications, same database) to all franchisers.

Each reseller/franchise is only allowed to view customer data from its

own sales, and never data from other resellers. A few tables store

business data (from all resellers), but the visibility of the data on each

row obeys this access restriction.

69

Data Segregation 4/5: Row-Level Security

Each row that a SELECT statement outputs is subject to extra filtering

by special coded rules - coded in the database themselves - not on an

external application. The rules decide if the row is visible or not.

Some databases provide embedded procedural languages for this (and

other) purposes: Oracle’s PL/SQL, MS-SQL Server’s Transact-SQL

procedures, PostgreSQL’s PL/pgSQL, etc.

70

Data Segregation 5/5: Row-Level Security

Oracle calls this feature “Virtual Private Databases”, but the majority of

database vendors call this feature “Row Level Security” (RLS).

If data is segregated at the database level, it is one extra layer of

security, in addition to the security features provided by the applications

that access the database.

71

Data Backups - Single Snapshot

Database backups are essential for business recovery, in situations of
catastrophic failure of the RDBMS (hardware and/or software).

No backup feature is configured (by default) out-of-the-box in any of the
SQL databases mentioned, so, it is up to the system administrator or
database administrator (DBA) to set up such a system (preferably, in an
automated way).

The simplest database backup tools create a consistent snapshot of the
data in the database (or of a single schema) at a given point in time.

(Backups performed at the filesystem level with the RDBMS running are usually
inconsistent - unrestorable - unless specific precautions - database dependent - are

taken).

72

Data Backups - validation

Data Backups are to be considered non existent until validation, by

performing an actual backup restore. (Restoration can be performed on a

secondary, but, identically configured RDBMS for validation purposes).

Treat access to the backup files (or to restored databases) with the same level of

security as access to the original database.

73

Data Backups - Continuous Backup

Single data snapshot backups loose all new data / new transactions, since the moment in time the
backup snapshot started. Depending on the periodicity of the backup and the frequency of new
transaction, it may be called a high Recovery Point Objective.

Recovery Point Objective (RPO) is the the maximum acceptable amount of data loss, measured in
time, that an organization can tolerate after an unexpected event.

Continuous Backup, also known as Continuous Data Protection
(CDP), ensures that all live-transactions are being backed up (in
addition to the initial snapshot backup) shortly after occurrence. This
usually assures a much lower RPO.

Continuous Backups usually allow backup restoration to be done at any point-in-time
between the last snapshot and the last transaction backed up. (Point-in-Time Recovery).

74

Data Backups - Backup Encryption

The backup files may be encrypted to prevent unauthorized access to

the data in the backup. This is especially important if the backup storage

is done outside the organization (motivated by better disaster recovery).

The backup encryption/decryption keys need to be secured in a way

that only the legitimate data owners can decrypt the backup (and restore

data).

75

Datasets for Analytics/Tests:Anonymization&Masking

If the organization is big enough to hire developers to work on the

applications that manipulate the data, developers may request access to

production data (for example, by restoring the backup on a development

replica of the production database) so that the applications may be

tested against real data.

Data anonymization and masking should be applied whenever

possible: Remove or obscure personally identifiable information from

datasets for analytics or testing purposes.

76

Data Fingerprinting (or Watermarking) 1/2

Real Data samples used in development/tests should be subject to anonymization and

masking whenever possible. But there are situations where that may not be possible:

Example 1: An application fails to process some names or addresses (unknowingly

caused by the presence of unexpected Unicode characters in the data). The developers

might (justifiably) need access to the original data to be able to replicate and identify the

problem. (Limit the dataset to the minimum set needed to reproduce the fault).

Example 2: Database performance tuning, where the database performance over masked

data is not the same as over real data. Database execution plans are dependent on the

data itself. (Anonymization preserving the same statistical data distribution characteristics

as the real data may not be possible, or very hard).

77

Data Fingerprinting (or Watermarking) 2/2

Real Data samples used in analytics/tests should be subject to anonymization and
masking whenever possible. If anonymization and masking are not possible, ensure
that this data is accessed by the least number of people needed, and that those
people are motivated - professionally, contractually, and legally - to uphold the
required confidentiality levels.

If unsure of people’s professional ethics, have those activities closely monitored by
someone trustworthy.

Inserting specific data modifications to detect and track the origin of data leaks is a
common practice in these situations. This is called Data Fingerprinting (or Data
Watermarking).

78

Data Encryption 1/3

The database’s datafiles are usually accessible to anyone with O.S.
administration privileges. This is of particular importance when:

- The database hardware is operated by a 3rd party cloud provider.
- The sys.admin. services are provided by 3rd party contractors.
- Replacement of disk hardware (to upgrade capacity/performance or to

replace faulty disks) is performed by 3rd party contractors.

Besides contractual obligations, having the data encrypted provides
another layer of data protection.

Data on old replaced disks (or tapes) should be shredded (even if
encrypted). Data overwrite is usually enough for magnetic disks or tapes, but SSD are more

complex.

79

Data Encryption 2/3 - Implementation Levels

Database-level (Transparent Data Encryption - TDE): This is handled automatically by the database

engine. It encrypts and decrypts data as it's written to and read from storage, without requiring changes

to applications. It protects data on disk, and should include log files and backups.

Application-level: The application itself encrypts the data before it is sent to the database. This gives

developers more control over the encryption algorithms and keys, but requires modifications to the

application code. (SQL calculations/searches/analytics may not be possible).

Column/field-level: Instead of encrypting the entire database, only specific sensitive columns, like a

"credit_card" number, are encrypted. This can be a good balance between security and performance.

Full disk encryption: This encrypts the entire hard drive, protecting all data at rest. It is a strong

defense, but it does not protect data once the system is running and the drive is decrypted by the

operating system.

80

Data Encryption 3/3 - TDE & Keys

Database-level (Transparent Data Encryption - TDE): The most
transparent option, no need to change applications. This feature is
usually provided by the RDBMS software itself. Without hardware
support, this (usually) introduces a performance penalty.

In any level, data encryption requires keys, which are the most sensitive
information, needed to operate the solution.

Encryption/decryption keys might need to be available automatically (so
that the system may reboot - shutdown/startup - unattended). If
decryption keys are available to automated processes, they are also
available to hackers.

81

Data Encryption 3/3 - Key best practices

Human interaction required: A person needs to provide a credential in-

place (password typing or time-based key or biometric key or hardware

token). The (private) key is not stored in the system. Cons: The system

cannot usually perform some operations (like a reboot or backup

restore) unattended.

Key splitting techniques and Key Vault APIs: Several

technologies/processes are needed to obtain the complete decryption

key. Automated processes can work unattended, but just makes it

harder for a hacker to do the same.

82

Preparing for Practices

Exercises on SQL Injection

A set of examples and exercises to demonstrate what is

SQL Injection, and how to prevent it.

But before,

A quick mention of some common Web Technology Stacks:

83

Popular Web Tech Stacks: L.A.M.P.
(Linux, Apache, MySQL, PHP)

Example of a PHP snippet connecting and querying a MySQL database:

<?php

// Create connection

$conn = new mysqli("localhost", "dbusername", "dbpassword", "dbname");

// Check connection

if ($conn->connect_error) { die("Connection failed: " . $conn->connect_error); }

$sql = "SELECT empId, name, deptname FROM Employees";

$result = $conn->query($sql);

if ($result->num_rows > 0) {

 // output data of each row

 while($row = $result->fetch_assoc()) {

 echo "empId: " . $row["empId"]. " - Name: " . $row["name"] . "
";

 }

} else {

 echo "0 results";

}

$conn->close();

?>

84

Popular Web Tech Stacks: Python (possibly w/ Flask)

Example of a Python snippet connecting and querying a MySQL

database:
import mysql.connector

mydb = mysql.connector.connect(

 host="localhost",

 user="dbusername",

 password="dbpassword",

 database="dbname"

)

mycursor = mydb.cursor()

mycursor.execute("SELECT * FROM customers")

myresult = mycursor.fetchall()

for x in myresult:

 print(x)

85

Popular Web Tech Stacks: NodeJS + MySQL

JS Example in NodeJS, connecting and querying MySQL:

let mysql = require('mysql');

let con = mysql.createConnection({

 host: "localhost",

 user: "dbusername",

 password: "dbpassword",

 database: "dbname"

});

con.connect(function(err) {

 if (err) throw err;

 con.query("SELECT * FROM customers", function (err, result, fields) {

 if (err) throw err;

 console.log(result);

 });

});

86

Tech Stack for Practice: SQLite

87

Tech Stack for Practice: sql.js.org

88

Tech Stack for Practice: sql.js exec() example

89

http://sql.js.org

Practices

Exercises on SQL Injection

Unzip sqlsecurity.zip and open

sqlsecurity/practices/index.html

and perform the “Setup” section.

Or visit

https://homes.pdmfc.com/jpsl/sqlsecurity/practice/

https://shorturl.at/yEGUo

90

https://homes.pdmfc.com/jpsl/sqlsecurity/practice/
https://shorturl.at/yEGUo

Practices - Lessons learned

After going through these exercises, a few obvious recommendations should stick in
memory when writing code:

● Never, ever, let "unsanitized" user input be directly added to a SQL statement
code.

● Make use of the existing API mechanisms to properly replace literal parameter
values instead of attempting to build the complete SQL text yourself by
concatenating/replacing strings.

● When executing statements on the database, always strive to use the least
amount of privileges needed! (ie. If executing read queries, there should be no
write privileges. Only the required tables and rows should be accessible.)

● Do not trust data sources, and neither blindly trust existing data. Always assume
that the data can be compromised at any time by unexpected means, and try to
write your code to minimize impacts of handling such corrupted data. 91

Other Resources

OWASP:

https://cheatsheetseries.owasp.org/cheatsheets/Database_Security_Cheat_Sheet.html

https://owasp.org/www-project-web-hacking-incident-database/

https://owasp.org/Top10/

92

https://cheatsheetseries.owasp.org/cheatsheets/Database_Security_Cheat_Sheet.html
https://owasp.org/www-project-web-hacking-incident-database/
https://owasp.org/www-project-web-hacking-incident-database/
https://owasp.org/www-project-web-hacking-incident-database/
https://owasp.org/www-project-web-hacking-incident-database/
https://owasp.org/www-project-web-hacking-incident-database/
https://owasp.org/www-project-web-hacking-incident-database/
https://owasp.org/www-project-web-hacking-incident-database/
https://owasp.org/www-project-web-hacking-incident-database/
https://owasp.org/www-project-web-hacking-incident-database/
https://owasp.org/www-project-web-hacking-incident-database/
https://owasp.org/www-project-web-hacking-incident-database/
https://owasp.org/Top10/

OWASP Database Security Cheat Sheet: ToC

93

	Slide 1: Database Security
	Slide 2: Table of Contents (1/3)
	Slide 3: Table of Contents (2/3)
	Slide 4: Table of Contents (3/3)
	Slide 5: Intended Audience
	Slide 6: High-Level Objectives
	Slide 7: Privacy, Data Confidentiality, and Trust!
	Slide 8: G.D.P.R. in a nutshell (1/4)
	Slide 9: G.D.P.R. in a nutshell (2/4)
	Slide 10: G.D.P.R. in a nutshell (3/4)
	Slide 11: G.D.P.R. in a nutshell (4/4)
	Slide 12: Techniques to enforce data confidentiality?
	Slide 13: The Role of Database Management Systems on Business Developments
	Slide 14: What is a database ? DB, DBMS, RDBMS
	Slide 15: Popular RDBMS (SQL)
	Slide 16: Popular DBMS (NoSQL)
	Slide 17: Desirable functionality in an RDBMS for O.L.T.P. ?
	Slide 18: Desirable characteristics of O.L.T.P. ?
	Slide 19: Desirable functionality in a DBMS for O.L.A.P. ?
	Slide 20: Popular DBMS for O.L.A.P.
	Slide 21: Glossary: Network Protocol
	Slide 22: Glossary: Common Internet Protocols
	Slide 23: Glossary: Popular Internet Applications
	Slide 24: People, Data, Privacy, and Organizations
	Slide 25: People, Data, Privacy, and Organizations
	Slide 26: Relational Database Data Structure
	Slide 27: SQL – Structured Query Language
	Slide 28: SQL Statements Classification
	Slide 29: DML Queries - SELECT
	Slide 30: SELECT * Example
	Slide 31: SELECT … WHERE condition
	Slide 32: SELECT+WHERE = Example
	Slide 33: SELECT+WHERE >= Example
	Slide 34: SELECT+WHERE >= Example
	Slide 35: SELECT+ORDER BY Example
	Slide 36: DML Inserting Data - INSERT
	Slide 37: INSERT Example
	Slide 38: DML Updating Data - UPDATE
	Slide 39: UPDATE Example
	Slide 40: DML Deleting Data - DELETE
	Slide 41: Optional SQL Introductory Practice
	Slide 42: Optional Introductory SQL Exercises
	Slide 43: Optional Introductory SQL Exercises
	Slide 44: More SQL Possibilities (optional)
	Slide 45: SELECT COUNT(*) Example
	Slide 46: SELECT+AVG Example
	Slide 47: SELECT+GROUP BY Example
	Slide 48: Cartesian Product
	Slide 49: SQL SELECT for Cartesian Product
	Slide 50: Natural Join
	Slide 51: SQL SELECT for Natural Join
	Slide 52: SQL has a much bigger set of functions…
	Slide 53: SQL has a bigger set of (non-standard) capabilities…
	Slide 54: Application Layers and SQL Queries (0/2)
	Slide 55: Application Layers and SQL Queries (1/2)
	Slide 56: Application Layers and SQL Queries (2/2)
	Slide 57: Database Protocols ?
	Slide 58: Database Protocols: Generic Security Characteristics
	Slide 59: Database Protocols 1/6: PostgreSQL Wire Protocol
	Slide 60: Database Protocols 2/6: MySQL Protocol
	Slide 61: Database Protocols 3/6: TDS (Tabular Data Stream)
	Slide 62: Database Protocols 4/6: MongoDB Wire Protocol
	Slide 63: Database Protocols 5/6: Cassandra Binary Protocol
	Slide 64: Database Protocols 6/6: Redis Serialization Protocol
	Slide 65: Principle of Least Privilege 1/2: Role Based Access Control
	Slide 66: Principle of Least Privilege 2/2: RBAC
	Slide 67: Data Segregation 1/5: Row-Level Security
	Slide 68: Data Segregation 2/5: Row-Level Security
	Slide 69: Data Segregation 3/5: Row-Level Security
	Slide 70: Data Segregation 4/5: Row-Level Security
	Slide 71: Data Segregation 5/5: Row-Level Security
	Slide 72: Data Backups - Single Snapshot
	Slide 73: Data Backups - validation
	Slide 74: Data Backups - Continuous Backup
	Slide 75: Data Backups - Backup Encryption
	Slide 76: Datasets for Analytics/Tests:Anonymization&Masking
	Slide 77: Data Fingerprinting (or Watermarking) 1/2
	Slide 78: Data Fingerprinting (or Watermarking) 2/2
	Slide 79: Data Encryption 1/3
	Slide 80: Data Encryption 2/3 - Implementation Levels
	Slide 81: Data Encryption 3/3 - TDE & Keys
	Slide 82: Data Encryption 3/3 - Key best practices
	Slide 83: Preparing for Practices
	Slide 84: Popular Web Tech Stacks: L.A.M.P.
	Slide 85: Popular Web Tech Stacks: Python (possibly w/ Flask)
	Slide 86: Popular Web Tech Stacks: NodeJS + MySQL
	Slide 87: Tech Stack for Practice: SQLite
	Slide 88: Tech Stack for Practice: sql.js.org
	Slide 89: Tech Stack for Practice: sql.js exec() example
	Slide 90: Practices
	Slide 91: Practices - Lessons learned
	Slide 92: Other Resources
	Slide 93: OWASP Database Security Cheat Sheet: ToC

